$8+7=3$
$12+1=1$
$10+8=6 \quad 5+21=4$

The result is less than the addends?!?
can other operations also be done?

$$
\begin{array}{lll}
\mathbf{3}-6=9 & 5-3=2 & \mathbf{2}-4=10 \\
6 \times 8=12 & 2 \times 4=8 & 7 \times 5=11
\end{array}
$$

I dlidnet nalke fun of you... You reflect on what I have told you

In N $8+7=15$, but I wrote 3 ; and so $10+8$ do 18 , but I put 6...

In which environment did I make these calculations?

$$
\begin{array}{ll}
\operatorname{In} N \ldots \\
8+7=15 & 3 \\
10+8=18 & 6 \\
12+1=13 & 1 \\
5+11=16 & 4
\end{array}
$$

this is the last help: The time is flowing...

Modular arithmetic

$100^{12} 1^{1} 2$ 9 8765^{4}
 CLOCK

Modular arithmetic

Now we make the table

+	0	${ }^{1}$	${ }^{2}$	${ }^{3}$	4	5	6	7	8	9	${ }^{10}$	${ }^{11}$
0												
1												
2												
3												
4												
5												
6												
7												
8												
9												
10												
11												

The table of addition

A	0	1	2	3	4	5	6	7	8	9	5	11
0	Q	1	2	3	4	5	6	7	8	9	10	11
1	1	2	3	4	5	6	7	8	9	10	11	0
2	2	3	6	5	6	7	8	9	10	11	5	1
3	3	4	5	5	7	8	9	10	11	6	1	2
4	4	5	6	7	8	9	10	11	0	1	2	3
5	6	7	8	9	10	11	0	1	2	3	4	
6	7	8	9	10	11	6	1	2	3	4	5	
7	7	8	9	10	11	0	1	2	3	4	5	6
8	9	10	11	6	1	2	3	4	5	6	7	
9	10	11	0	1	2	3	4	5	6	7	8	
10	11	0	1	2	3	4	5	6	7	8	9	
11	2	1	2	3	2	5	6	7	8	9	10	
1												

Is the addition close?
Is there a neutral element?
Is there the commutative property?
are the numbers on a straight line? Is there a order?

The table of subtraction

$$
A=\{0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 ; 10 ; 11\}
$$

-	0	1	2	3	4	5	6	7	8	9	10	11
0	2	11	10	3	8	7	6	5	4	3	2	1
1	11	9	21	10	9	8	7	6	5	4	3	2
2	10	2	2	11	10	9	8	7	6	5	4	3
3	9	2	1	2	11	10	9	8	7	6	5	4
4	8	3	2	1	2	11	10	9	8	7	6	5
5	7	4	3	2	1	2	11	10	9	8	7	6
6	6	5	4	3	2	1	2	11	10	9	8	7
7	5	6	5	4	3	2	1	2	11	10	9	8
8	4	7	6	5	4	3	2	1	9	11	10	9
9	3	8	7	6	5	4	3	2	1	2	11	10
10	2	9	8	7	6	5	4	3	2	1	0	11
11	1	10	9	8	7	6	5	4	3	2	1	0

Is the subtraction close?
Is there a neutiral element?
Is there the commutative property?

Now we do some examples...

The pointer of hours marks 12; what will time mark then 29 hours?
We have to do a division:
29:12 $=2$ with the rest of 5 .
After 29 hours the pointer will do 2 complete turns and it will be on 5 , it's marking 5 o'clock.
In modular awithmetic the operation becomes: $0 \sim 29$

- 5

At 3 : what will time mark then 25 hours?
$3+25=2828: 12=2$ with the rest of 4

The pointer will mark 4 o'clock. $^{\prime}$

Thanks for yous

 aitention